COSA 9610

The COSA 9610 Provides a Fast and Accurate Measurement of Wobbe Index, Heating Value and Combustion Air Requirement Index (CARI)

- Fast
- Accurate
- Low Maintenance

- Turbine Control
- Flare Stack Control
- Fuel Optimization
- Gas Blending
- Custody Transfer
Features

- High Accuracy
- Fast Response
- Large Measurement Range
- Measures Low BTU Gases
- Low Maintenance
- Flameless/No Flameouts
- Measures Wobbe and CARI
- Hazardous Area Approved
- No Special Enclosure Required for Outdoor Use

Measurement Principle (Residual Oxygen Measurement)

The COSA 9610 BTU Analyzer’s measuring principle is based on the analysis of the oxygen content in the flue gas after combustion of the sample. A continuous gas sample is mixed with dry air at a precisely maintained constant ratio, which depends on the BTU range of the gas to be measured. The fuel air mixture is oxidized in a combustion furnace in the presence of a catalyst at 800°C, and the oxygen concentration of the combusted sample is measured by a zirconia oxide cell. The residual oxygen provides an accurate measurement for the Combustion Air Requirement of the sample gas, which can be correlated accurately to the Wobbe Index of the gas.

Pressure and temperature of gas sample and instrument air are equalized by means of pre-regulators, a dual chamber pressure exchange membrane regulator (booster relays) and a heat exchanger. The two streams then pass through precision orifices operating at super-critical stage into a mixing chamber. Orifice sizes in the mixing chamber, which are selected based on desired BTU range, precisely maintain a constant fuel-air ratio. The air-gas mixture then enters a combustion chamber where the fuel is oxidized at 800°C in the presence of a catalyst. A zirconia oxide cell measures the residual oxygen concentration.

Advantages

Key advantages of this method are its insensitivity to changes in ambient temperature, a very fast response with the ability to measure gases with BTU values down to zero and the measurement of the Combustion Air Requirement Index besides Wobbe Index and Heating Value.
Wobbe Index Vs. Combustion Air Requirement Index

The COSA 9610 provides a direct measurement of the Combustion Air Requirement Index (CARI) of a fuel, which is ideally suited for the precise control of the fuel-air ratio of a combustion process.

In applications where the amount of energy introduced to the burner is to be controlled, the Wobbe Index can be closely correlated to the CARI index and differences between the two measurements can be cancelled out by the use of suitable calibration gases. In natural gas applications the instrument accuracy of the COSA ±0.4% of reading.

Correlation Between Wobbe Index and Combustion Air Requirement

<table>
<thead>
<tr>
<th>Combustion Air Requirement (mol/mol)</th>
<th>Wobbe Index (BTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBON MONOXIDE (CO)</td>
<td>2.427</td>
</tr>
<tr>
<td>HYDROGEN (H₂)</td>
<td>9.048</td>
</tr>
<tr>
<td>ACETYLENE (C₂H₂)</td>
<td>12.52</td>
</tr>
<tr>
<td>METHANE (CH₄)</td>
<td>12.787</td>
</tr>
<tr>
<td>ETHYLENE (C₂H₄)</td>
<td>14.475</td>
</tr>
<tr>
<td>ETHANE (C₂H₆)</td>
<td>16.292</td>
</tr>
<tr>
<td>PROPYLENE (C₃H₆)</td>
<td>17.638</td>
</tr>
<tr>
<td>BUTYLENE (C₄H₈)</td>
<td>18.541</td>
</tr>
<tr>
<td>PROPANE (C₃H₈)</td>
<td>19.126</td>
</tr>
<tr>
<td>BENZENE (C₆H₆)</td>
<td>20.966</td>
</tr>
<tr>
<td>N-BUTANE (n-C₄H₈)</td>
<td>21.487</td>
</tr>
<tr>
<td>ISO-BUTANE (iso-C₄H₈)</td>
<td>21.537</td>
</tr>
<tr>
<td>PENTENE (C₅H₁₀)</td>
<td>23.24</td>
</tr>
<tr>
<td>TOLUENE (C₆H₅)</td>
<td>22.835</td>
</tr>
<tr>
<td>N-PENTANE (n-C₅H₁₂)</td>
<td>23.45</td>
</tr>
<tr>
<td>NEO-PENTANE (neo-C₅H₁₂)</td>
<td>23.48</td>
</tr>
<tr>
<td>ISO-PENTANE (iso-C₅H₁₂)</td>
<td>23.509</td>
</tr>
<tr>
<td>HEXANE (C₆H₁₂)</td>
<td>25.161</td>
</tr>
</tbody>
</table>

The table and graph above show the relationship of Wobbe Index and the Stochiometric Dry Air Requirement for some typical gas constituents. The correlation is close to linear ($R^2=0.9767$) with an intercept close to zero. The residual oxygen method takes advantage of this correlation by linear extrapolation between measurements of known calibration gases. R^2 for typical natural gas constituents plus hydrogen and CO is 0.9888.

Heating Value

For applications requiring the measurement of the Heating Value, a precision specific gravity cell with an accuracy of ±0.1% of reading is integrated into the COSA 9610, and the processor computes the heating value. In applications, where the fuel-air ratio is to be optimized based on the CARI, the measurement of specific gravity is not required.
Analyzer Construction

The COSA 9610 is housed in a painted stainless steel NEMA4x (IP65) cabinet with the dimensions 41” x 41” x 16” suitable for outdoor installations without additional temperature controlled shelter. For extreme climate conditions, the standard operating temperature range of the COSA 9610 can be extended with the addition of a cabinet heater and/or vortex cooler. The cabinet is suitable for wall mounting or rack mounting. A rack is optionally available.

The analyzer cabinet has three compartments: the gas mixing compartment, the combustion furnace compartment and the electronics compartments.

The gas mixing compartment contains sample conditioning and the gas mixing system. Components in this compartment are intrinsically safe. The gas mixing compartment can optionally be heated to avoid condensation of heavier gas constituents.

The electronics compartment contains the industrial PC based controller, which performs all instrument control functions and calculations. Results are available through isolated analog outputs and an LCD, which is visible through a cabinet window and displays residual O2 in %, Cell voltage in mV, Wobbe-Index and Calorific Heating Value (optionally) in BTU/SCF or MJ/Nm3, relative density (optional), and CARI (Combustion Air Requirement Index).

The combustion furnace compartment contains the combustion furnace with the zirconia oxide sensor. The exhaust gas is vented and drained. The electronics compartment and combustion furnace compartment can optionally be purged for Class 1 Div 2 or Class 1 Div 1 applications.

The purge panel is mounted at the underside of the enclosure.

Maintenance

The COSA 9610 has no moving parts and consequently, maintenance requirements are low. With the use of proper sample conditioning, the COSA 9610 can operate unattended for several months. All compartments are easily accessible through separate doors on the front side of the enclosure.

Certifications

TFM + CSA & ATEX Certifications Available.
SPECIFICATIONS

Analyzer Performance

Model: COSA 9610

Sample gas: Natural gas, fuel gas, refinery gases, biogas etc.

Ranges:
- Wobbe Index: 0-2730 BTU/SCF, span 1150 BTU/SCF (selectable)
- CARI Index: 0-20, span 0-10

Accuracy (Wobbe):
- ±0.4% of reading for natural gas
- ±2.0% of reading for refinery gases with large variations of constituents and BTU values

Repeatability: ±0.7 BTU/SCF

Drift: 0.4 BTU/SCF/24 hours

Response time:
- T90 < 5 sec Wobbe only
- T90 ≥ 10sec with *Density cell

Ambient temperature: Standard: -40°C (-40°F) to +60°C (104°F)

Outputs:
- 2 x isolated 4-20mA, with programmable span
- Backlit LCD screen
- Malfunction relay

Specific Gravity (optional):
- Range: 0.2-2.2 rD

Accuracy: ±0.1% of reading

Utilities

Power supply: 110 VAC, 50/60 Hz or 220 VAC/50 Hz

Power consumption: 350 VA maximum

Instrument air:
- 20 SCFH (analyzer) at 42 PSIG
- 40 SCFH (z-purge) at 80 PSIG

Sample: 2 SCFH at 28 PSIG

* Streaming option for<5 seconds
Installation

Mounting: Wall mounting

Dimensions: 40.82" x 40.82" x 16.33" (1000 x 1000 x 400 mm)

Weight: 110 lbs (50 kg)

Certifications: COSA 9610 A
Ex ib px II T3 Gb Ta=+5°C to 45°C
IP66 © I I 2G
FM11ATEX0006X

Dimensions

E1: Power supply analyzer
E2: Analog signal
E3: Digital signal
N1: Process gas supply
N2: Supply calibration gas low
N3: Supply calibration gas medium (optional)
N4: Supply calibration gas high
N5: Instrument air
N6: Atmospheric vent
N7: Atmospheric vent
N8: Atmospheric vent
N9: Purge air (optional)
N10: Condensate drain
PREMIUM INSIGHTS – GAIN REAL-TIME INSIGHT INTO YOUR PROCESS

Process Insights’ products and solutions deliver innovative and differentiated analysis and measurement solutions and technologies that add high value to our customers and protect the environment.

Our commitment is to deliver smart and affordable innovation that transforms our world that optimizes process, improves safety, and transforms our world.

CENTERS OF EXCELLENCE
PROVIDING PROVEN SOLUTIONS FROM A GLOBAL TECHNOLOGY LEADER

COSA Xentaur
4140 World Houston Parkway
Suite 180
Houston, TX 77032
USA
+1 713 947 9591
www.cosaxentaur.com
info@cosaxentaur.com

Process Insights – The Americas
4140 World Houston Parkway
Suite 180
Houston, TX 77032
USA
+1 713 947 9591
info@process-insights.com

Process Insights – EMEA
ATRICOM
Lyoner Strasse 15
60528 Frankfurt
Germany
+49 69 20436910
info@process-insights.com

Process Insights – APAC
Wujiang Economic and Technology Development Zone
No. 258 Yi He Road, 215200 Suzhou
Jiangsu Province China
+86 400 0860196
info@process-insights.com

OUR PREMIUM GLOBAL BRANDS